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Abstract

Purpose – This study considers the natural convection in a horizontal annulus with constant heat
flux on the inner cylinder, and investigates the transition of flows for various Prandtl numbers.

Design/methodology/approach – The streamfunction-vorticity equation and the energy equation
governing the flow and temperature field are solved with finite difference method.

Findings – Results are presented to show the transition of flow patterns with increase (or decrease) of
the Rayleigh number, and a hysteresis phenomenon is observed.

Originality/value – Dual solutions are shown by using a numerical analysis in a horizontal annulus
with constant heat flux on the inner wall.
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Nomenclature
Di ¼ diameter of inner cylinder
Do ¼ diameter of outer cylinder
g ¼ gravitational acceleration
�h ¼ average heat transfer coefficient ¼

qH/(Tm,i 2 To)
k ¼ thermal conductivity
L ¼ gap width of the annulus ¼ ðDo 2

DiÞ=2
Nu ¼ mean Nusselt number ¼ �hL=k
Pr ¼ Prandtl number ¼ n=a
qH ¼ constant heat flux applied on the

inner cylinder
qo ¼ local heat flux distribution the outer

cylinder
Ra ¼ Rayleigh number ¼ bg(qHL/k)L 3/

an
Rac ¼ critical Ra above which dual

solutions exist
RacL ¼ lower critical Rayleigh number
RacU ¼ upper critical, Rayleigh number
r ¼ dimensionless radial coodinate

ri, ro ¼ dimensionless radii of inner and
outer cylinders, respectively

T ¼ temperature
Tm,i ¼ mean temperature of the inner

cylinder
To ¼ temperature of the outer cylinder
t ¼ dimensionless time

Greek symbols
a ¼ thermal diffusivity
b ¼ coefficient of thermal expansion
h ¼ stretched coordinate in the radial

direction
u ¼ dimensionless temperature

¼ k(T 2 To)/qHL
ui ¼ dimensionless temperature

distribution on the inner cylinder
um,i ¼ dimensionless mean temperature of

the inner cylinder
n ¼ kinematic viscosity
f ¼ angular coordinate
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fq,max ¼ angle representing the point of
maximum heat flux on the outer
cylinder

fS ¼ angle representing the location of
separation point between two cells
on the surface of cylinder

fS,i ¼ fS on the inner cylinder

fS,o ¼ fS on the outer cylinder
ft,max ¼ angle representing the point of

maximum temperature on the
inner cylinder

C ¼ dimensionless streamfunction
v ¼ dimensionless vorticity

1. Introduction
Natural convection in a horizontal annulus has been received much attention because
of the theoretical interest and its wide engineering application such as thermal energy
storage systems, cooling of electronic components and transmission cables.
Comprehensive reviews on the natural convection phenomena in a horizontal
annulus were presented by Kuehn and Goldstein (1976), Gebhart et al. (1988), and Yoo
(1998).

There is no static state without fluid flow in a horizontal annulus with heated
inner and cooled outer cylinders. The flow of low Rayleigh number forms a
crescent-shaped eddy in which fluid rises near the inner hotter cylinder and sinks
near the outer colder one (Kuehn and Goldstein, 1976). At high Ra, however,
hydrodynamic instability (Lee and Korpela, 1983) can occur in the vertical section,
and thermal instability (Busse, 1981) on the top part of thermally unstable region.
The two kinds of instability yield diverse transition phenomena of the flow as the
Rayleigh number increases (Yoo, 1998, 1999), which are dependent on Prandtl
number and the aspect ratio of inner cylinder diameter (Di) to the gap width (L).

In the convection problem between two cylinders, the surface of the cylinders
can have isothermal (Dirichlet B.C.) or heat flux condition (Neumann B.C.). The
previous studies have concentrated the main attention on the annuli with
isothermal walls kept at constant wall temperature difference. The problem with
Neumann boundary condition generally require the more computation time than
that with Dirichlet condition. However, the annulus with constant heat flux on the
wall has an important physical aspect, because it can approximate the direct
electrical heating by the joule effect. Heat generated by constant electric current in
the cylinder creates a constant heat flux condition on the surface of the cylinder
(Casterjon and Spalding, 1988). To date, only a few (Van de Sande and Hamer,
1979; Glakpe et al., 1986; Kumar, 1988; Castrejon and Spalding, 1988) have
investigated the convection with heat flux boundary conditions; and they did not
find multiple solutions. On the other hand, multiple steady solutions were found
for an annulus with isothermal walls (Yoo, 1999).

This study investigates the natural convection in a horizontal annulus with
constant heat flux on the inner wall. We consider an annulus with a
small-diameter inner cylinder ðDo=Di ¼ 5Þ; and investigate transition of flows for
various fluids ð0:1 # Pr # 1Þ; The annulus considered here approximates an
apparatus consisted of an electrically-heated inner rod mounted concentrically
within an outer cylinder. A hysteresis phenomenon and dual solutions are found
by using numerical analysis. The characteristics of the flow fields, bifurcation
phenomena, and distributions of local temperature and heat flux on the walls are
investigated.
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2. Governing equations and numerical method
The fluid is contained between two horizontal concentric circular cylinders (Figure 1).
The surface of hot inner cylinder is maintained at a constant heat flux (qH), and the cold
outer cylinder is kept at a constant temperature (To). The Boussinesq approximated
dimensionless 2D. Governing equation can be written as follows (Kumar, 1988;
Yoo, 1998):

›v

›t
¼ J ðC;vÞ þ Pr72v2 PrRa sinðfÞ

›u

›r
þ cosðfÞ

›u

r›f

� �
ð1Þ

v ¼ 272C ð2Þ

›u

›t
¼ J ðC; uÞ þ 72u ð3Þ

where the Jacobian J(F,G) and Laplacian 72 are defined as

J ðF;GÞ ¼
1

r
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›r

›G

›f
2
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›f

›G

›r

� �
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›

r›r
r
›
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þ

›2

r 2›f 2
ð5Þ

The boundary conditions on the walls are

C ¼
›C

›r
¼ 0; v ¼ 2

›2C

›r 2
;

›u

›r
¼ 21 at r ¼ ri ð6Þ

C ¼
›C

›r
¼ 0; v ¼ 2

›2C

›r 2
; u ¼ 0 at r ¼ ro ð7Þ

The flow is assumed symmetric about the vertical plane through the center of
cylinders.

We define the average heat transfer coefficient ð�hÞ with, the mean temperature (Tm,i)
of the inner cylinder as

�h ¼
qH

ðTm;i 2 ToÞ
ð8Þ

Figure 1.
Problem configuration and
a plot of streamlines and
isotherms of
conduction-dominated
regime
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The mean Nusselt number ðNuÞ can be

Nu ¼
�hL

k
¼

1

um;i
ð9Þ

The local heat flux (qo) on the outer cylinder is given by

qo

qH
¼ 2

›u

›r
at r ¼ ro ð10Þ

The unsteady governing equations (1)-(7) are numerically solved by using finite
difference method. Equations (1) and (3) are cast into finite difference form using the
leap-frog method of Dufort-Frankel for the diffusion and time derivative terms, and
central differencing for the Jacobian (Roache, 1972). The derivative terms, and central
differencing for the Jacobian (Roache, 1972). The Poisson equation for the
streamfunction is discretized by use of five-point formula, and the discretized
equation is solved by the direct method of Buzbee et al. (1970). A uniform grid spacing
is used in the angular direction, and the following coordinate stretching is utilized in
the radial direction.

r ¼ ri þ
1

2
1 þ

tanh{Cð2h2 1Þ}

tanhðCÞ

� �
with C ¼ 1:5; 0 # h # 1 ð11Þ

We consider an annulus with Do=Di ¼ 5; and use a ðr £ fÞ mesh of ð65 £ 65Þ : mesh
test has been made, and the ð65 £ 65Þ mesh was confirmed to give sufficiently accurate
result (Table I).

3. Results and discussion
Computations were performed for the fluids with 0:1 # Pr # 1 in the range of
Ra # 3 £ 105:At first, we investigate the transition phenomena with Pr ¼ 0:1: Figure 2
shows the variation of flow fields with respect to Ra for Pr ¼ 0:1: The conduction
dominated flow at small Ra constitutes a kidney-shaped eddy in a half annulus which is
nearly symmetric about the horizontal axis of f ¼ p=2; and the most strong fluid flow

Angular direction
ðr £ fÞ mesh 35 £ 33 35 £ 65 35 £ 129 35 £ 257
f, Nu
ft,max (8) 60.0 62.6 63.1 63.2
f q,max (8) 55.2 57.2 57.7 57.9
f S,i (8) 48.1 50.1 50.6 50.7
f S,o (8) 52.1 53.4 53.7 53.8
N�u 5.73 5.82 5.84 5.84
Radial direction
ðr £ fÞ mesh 25 £ 65 45 £ 65 65 £ 65 85 £ 65
f, Nu
ft,max (8) 62.7 62.5 62.4 62.4
f q,max (8) 56.9 57.3 57.4 57.5
f S,i (8) 50.5 50.0 49.9 49.9
f (8) S,o 53.3 53.5 53.5 53.5
N�u 5.79 5.83 5.85 5.86

Table I.
Test of grid spacings in

the angular and radial
directions with the

locations of maximum
temperature (ft,max),
maximum heat flux

(fq,max), and separation
points (fS,i, fS,o), and
mean Nusselt number
ðN�uÞ for Pr ¼ 0:1 with

Ra ¼ 1:5 £ 105;
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occurs in the vertical section of the annulus (Figure 1). As Ra increases, the rising fluid
near hot inner cylinder tends to flow in the upward vertical direction, and the fluid flow
along the wall becomes relatively weak, since the viscosity of the fluid is too small to
drag the fluid along the inner wall when Pr ¼ 0:1; and consequently the fluid on the
upper part of the annulus becomes relatively stagnant (Figure 2(a): Ra ¼ 4 £ 104Þ: The
relatively stagnant zone on the upper part of the annulus becomes wide with increase of
Ra, and finally a new weak eddy is created in that zone due to the horizontal temperature
gradient and the dragging effect of the large eddy at 5 £ 104 # Ra # 7 £ 104

(Figure 2(b)). As Ra increases further, the weak eddy grows and extends to the outer
cylinder at 8 £ 104 # Ra # 105 (Figure 2(c)), and afterwards extends to the inner
cylinder at Ra ¼ 1:1 £ 105 (Figure 2(d)).

Figure 2 shows four kinds of flow patterns, but we can classify the flow patterns
into two classes according to the flow direction atop the inner cylinder. We can see that
the fluid near the top of hot inner cylinder moves upward in the flow fields of
Figure 2(a)-(c), but moves downward in Figure 2(d). We will name the former as an
“upward flow” and the latter as a “downward flow”; then Figure 2 shows a transition of
flows from upward to downward flow with increase of Ra. However, it was observed
that if we used the downward flow of Figure 2(d) as an initial condition, the same type
of flow was also obtained at the values of Ra’s in Figure 2(a)-(c). Examples of the
downward flows thus obtained are shown in Figure 3 for Ra ¼ 4 £ 104 and 6 £ 104:
In other words, Figures 2(a) and (b) and 3(a) and (b) show dual flows at Ra ¼ 4 £ 104

and 6 £ 104 for the fluid with Pr ¼ 0:1:
We have investigated the transition phenomena of flows systematically by

increasing and decreasing Ra, and the results for Pr ¼ 0:1 are shown in Figure 4.

Figure 2.
Streamlines and isotherms
showing the transition
sequence of flows with
respect to Ra at Pr ¼ 0:1;
(a) Ra ¼ 4 £ 104; (b) Ra ¼
6 £ 104; (c) Ra ¼ 105;
(d) Ra ¼ 1:1 £ 105; the
cross “ þ ” in the flow
field indicates the point
of Cmax
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The figure shows mean Nusselt number and bifurcation of flows as functions of Ra.
As Ra increases, a transition from upward to downward flow occurs at an upper
critical Ra ðRacU < 1:05 £ 105Þ; and a transition form downward to upward flow
occurs at a lower critical Ra ðRacL < 3:8 £ 104Þ by decreasing Ra. A hysteresis
phenomenon occurs between the two solution branches of upward and downward
flows, and flows exist at RacL , Ra , RacU: When there exist dual flows at Pr ¼ 0:1;
the mean Nusselt number of downward flow is greater that that of upward flow.

Figure 5 shows the distributions of temperature on inner cylinder and local heat flux
on outer cylinder for Pr ¼ 0:1 with Ra ¼ 4 £ 104 and 105. For the upward flows, the
maximum temperature on the inner cylinder always occurs at the uppermost point of
the cylinder ðf ¼ 0Þ; but the heat flux on the outer cylinder has its maximum value at
the point other than f ¼ 0 when Ra ¼ 4 £ 104 and 105, and the location of the point is
varied with Ra. This fact can be also seen from the flow fields and shapes of the
thermal plume in Figure 2. For the downward flows, both the maximum temperature
and maximum heat flux occur, at f – 0:

Figure 3.
Downward flows

at Pr ¼ 0:1;
(a) Ra ¼ 4 £ 104;

(b) Ra ¼ 6 £ 104: The
angle fS represents the

location of separation
point on the wall

Figure 4.
Mean Nusselt number

ðN�uÞ as a function of Ra
for Pr ¼ 0:1: The letters
“U” and “D” denote the

“upward” and
“downward” flows,

respectively. The
transition phenomena
with respect to Ra are

represented with arrows
on the curve of N�u
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The locations of maximum heat flux (fq,max), maximum temperature (ft,max) and
separation points on inner(fS,i) and outer (fS,o) cylinders, as functions ofRa forPr ¼ 0:1
are shown in Figure 6. For upward flow, fq;max ¼ 0 at the conduction dominated regime
of Ra # 1; 500; but fq;max . 0 at Ra $ 2; 000 and increases rapidly with increase of Ra
up to Ra < 2 £ 104 at which fq,max has its maximum value (<51.18); and afterwards
fq,max decreases with increase of Ra, and finally a transition from upward to downward
flow occurs at about fq;max ¼ p=4: For downward flow, the point of maximum
temperature on the inner cylinder is shifted upward (ft,max decreases) as Ra decreases,
and it is notable that a reverse transition form downward to upward flow occurs when
the point is near p=4: The separation points (Figure 3) of two cells at the inner and outer
cylinder always locate above the points of maximum temperature and maximum heat
flux, respectively, fS;i , ft;max on inner cylinder, and fS;o , fq;max on outer cylinder.
And ft,max, fS,i, and fS,o show nearly identical behavior with respect to Ra.

The points of maximum temperature and maximum heat flux on, the walls are
important in engineering applications. We have tested several meshes by varying the
grid numbers in the radial and angular directions to determine the accurate locations of
the points (Table I). We can see that the ðr £ fÞ mesh of ð65 £ 65Þ yields sufficiently
accurate results for the present problem. When using a much finer mesh of ð65 £ 257Þ
at Pr ¼ 0:1 and Ra ¼ 1:5 £ 105; the values of ft,max, fq,max, fS,i, fS,o, and Nu are, 63.1,
58.2, 50.5, 53.9, and 5.878, respectively. The errors of ft,max and fq,max between
ð65 £ 65Þ and ð65 £ 257Þ meshes, are about 1.1 and 1.4 percent, respectively.

Figure 5.
Distributions of
temperature and heat flux
of dual solutions on the
walls for Pr ¼ 0:1 with
Ra ¼ 4 £ 104 and 105,
(a) local temperature
distribution on the inner
cylinder [ui(f)], (b) local
heat flux distribution on
the outer cylinder
[qo(f)/qH]. The letters “U”
and “D” denote the
“Upward” and
“downward” flows,
respectively
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We have observed that the transition phenomenon from upward to downward flow
found for the fluid of Pr ¼ 0:1 does not occur, when 0:2 # Pr # 1: For the fluid of
0:2 # Pr # 1; the transient development of flows starting from zero initial condition
ðv ¼ u ¼ 0Þ or the upward flow of lowerRa yields upward flow for allRa. However, if we
use the downward flow of Pr ¼ 0:1 as an initial condition, the same type of downward
flow can be obtained for 0:2 # Pr # 1 above a certain critical Rayleigh number.

Figure 7 shows an example of the dual flows of Pr ¼ 0:2 at Ra ¼ 105; and the mean
Nusselt number and bifurcation phenomenon of Pr ¼ 0:2 are shown in Figure 8. When
Pr ¼ 0:2; the ascending fluid flow in the top part of the annulus is strong, and a
stagnant zone is not formed in that region (Figure 7), and consequently, transition form
upward to downward flow does not occur (Figure 8). Only the transition from
downward to upward flow occurs at a critical Ra, by decreasing Ra; and dual flows
exist above the critical Ra (Figure 8). In the regime of dual flows at Pr ¼ 0:2; the mean
Nusselt number of upward flow is greater than that of downward flow (Figure 8),
which is an opposite behavior to those of Pr ¼ 0:1 (Figure 4).

Figure 9(a)-(c) shows the locations of maximum heat, flux (fq,max) on the outer
cylinder and maximum temperature (ft,max) on the inner, wall as functions of Ra, when

Figure 7.
Streamlines and isotherms

of dual flows when
Pr ¼ 0:2 and Ra ¼ 105

Figure 6.
Angles representing the

locations of maximum
heat, flux (fq,max),

maximum temperature
(ft,max), and separation
points (fS,i, fS,o) on the

walls, when Pr ¼ 0:1;
(a), (b) fq,max, (c) ft,max,

(d) fS,i, (e) fS,o. The letters
“U” and “D” denote the

“upward” and
“downward” flows,

respectively. All the the
angles are measured from

the top of annulus
(Figure 1)
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Pr ¼ 0:2: Although the upward flow of Pr ¼ 0:2 can have its maximum heat flux at
the point other than f ¼ 0; the ratio of [max (qo)]/[qo(at f ¼ 0Þ] is ,1.05 for an Ra; and
the maximum value of fq,max is about 228 (Figure 9(a)), which is much smaller than
that of Pr ¼ 0:1 (Figure 6(a)). For the downward flow of Pr ¼ 0:2; the temperature on
the inner cylinder and the heat flux on the outer cylinder at high Ra have their
maximum values at the nearly the same angular positions (Figure 9(b) and (c)). The
behavior of the locations of separation points (fS,i, fS,o) with respect to Ra shown in
Figure 9(d) and (e) for Pr ¼ 0:2 is similar to that of Pr ¼ 0:1: However, Pr ¼ 0:2 has
the smaller values of fS,i and fS,o than Pr ¼ 0:1; at the same Ra: that is, the separation
points are shifted upward more than the case of Pr ¼ 0:1:

It has been observed that the upward flow of 0:3 # Pr # 1 has both the maximum
temperature on inner cylinder and the maximum heat flux on outer cylinder, at f ¼ 0:
An example of dual flows in 0:3 # Pr # 1 is shown in Figure 10 with Pr ¼ 0:7 (air),

Figure 8.
Mean Nusselt number
ðN�uÞ as a function of Ra
when Pr ¼ 0:2: The letters
“U” and “D” denote the
“upward” and
“downward” flows,
respectively

Figure 9.
Angles representing the,
locations maximum heat
flux (fq,max), maximum
temperature (ft,max), and
separation points (fS,i,
fS,o) on the walls, when
Pr ¼ 0:2; (a), (b) fq,max,
(c) ft,max, (d) fS,i, (e) fS,o.
The letters “U” and “D”
denote “upward” and
“downward” flows,
respectively
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and the corresponding distributions of temperature and heat flux on the walls are
shown in Figure 11. As Pr increases, the center of the main eddy moves upward, for
both upward and downward flows (Figures 7 and 10). The mean Nusselt number
characteristics of dual flows and bifurcation phenomenon at 0:3 # Pr # 1 are the
same as those of Pr ¼ 0:2 shown in Figure 8.

Up to now, we have investigated the transition phenomena of flows for various
fluids at 0:1 # Pr # 1; and observed duel steady flows which are dependent on Pr and
Ra. The solution regimes are summarized on the Pr 2 Ra plane in Figure 12. The flow
of Pr ¼ 0:1 has one steady flow at Ra , RacL and Ra . RacU; but has dual steady
flows at RacL , Ra , RacU: When 0:2 # Pr # 1; dual flows exist at Ra . Rac:
The critical Rayleigh number above which dual flows exist is increased, as Pr
increases.

4. Conclusions
We have considered a two-dimensional natural convection problem in a horizontal
annulus with a small-diameter inner cylinder ðDo=Di ¼ 5Þ subjected to a constant heat
flux condition. And the transition phenomena are investigated for various fluids with
0:1 # Pr # 1:

Figure 11.
Distributions of heat flux

[qo(f)/qH] on the outer
cylinder and temperature

[ui(f)] on the inner
cylinder for Pr ¼ 0:7 with
Ra ¼ 2 £ 105; (a) qo(f)/qH

“U”, (b) ui(f) “U”,
(c) qo(f)/qH “D”, (d) ui(f)
“D”. The letters “U” and
“D” denote the “upward”

and “downward” flows,
respectively

Figure 10.
Streamlines and isotherms

of dual flows when
Pr ¼ 0:7 and
Ra ¼ 2 £ 105
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We classify the flow patterns largely into two classes according to the flow direction
atop the hot inner cylinder: an “upward flow” and a “downward flow”. At 0:1 #
Pr # 1; dual steady-state solutions of upward and downward flows are found. A
hysteresis phenomenon occurs at Pr ¼ 0:1; but only a transition from downward to
upward flow occurs at 0:2 # Pr # 1: At Pr ¼ 0:1; the mean Nusselt number of
downward flow is larger than that of upward flow; but when 0:2 # Pr # 1; downward
flow has the less mean Nusselt number than upward flow. Downward flow has its
maximum temperature and maximum heat flux on the walls at the point other than the
uppermost point of the cylinders ðf ¼ 0Þ: For the upward flow, maximum heat flux on
the outer cylinder occurs at f – 0 at high Ra, when 0:1 # Pr # 0:2; but it occurs at
f ¼ 0 for all Ra, when 0:3 # Pr # 1: As Pr increases, the critical Rayleigh number
above which dual exist is increased.
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